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The validity of the following two equations can be verified by direct substitution
of the preceding results:

lel 4 Pz"lz = mg (10.3-10)
and
P+P=1 (10.3-11)

where we have omitted the ks temporarily in favor of notational clarity.
In order to evaluate the “goodness” of the threshold at level k we use the
normalized, dimensionless metric

7%
=— 10.3-12
B ok ( )
where o% is the global variance [i.e., the intensity variance of all the pixels in
the image, as given in Eq. (3.3-19)],

o= Lz_l(i - mg)*p; (10.3-13)
i=0

and a% is the between-class variance, defined as
0% = P(my — mg)* + Py(my — mg)? (10.3-14)
This expression can be written also as

0% = PiPy(my — mp)?

_ (mgP, — m)?
P(1 - P) 4. (10515 makes
sense only if P, is greater
where mg and m are as stated earlier. The first line of this equation follows ~hen0andless tan 1,
from Eqgs. (10.3-14), (10.3-10), and (10.3-11). The second line follows from  Eq.(103-11),implies
Egs. (10.3-5) through (10.3-9). This form is slightly more efficient computa- ~ hat o mis satsty the
tionally because the global mean, mg, is computed only once, so only two pa- '
rameters, m and P;, need to be computed for any value of k.
We see from the first line in Eq. (10.3-15) that the farther the two means m,
and m, are from each other the larger 0% will be, indicating that the between-
class variance is a measure of separability between classes. Because o is a
constant, it follows that 7 also is a measure of separability, and maximizing this
metric is equivalent to maximizing o%. The objective, then, is to determine the
threshold value, k, that maximizes the between-class variance, as stated at the
beginning of this section. Note that Eq. (10.3-12) assumes implicitly that
o% > 0. This variance can be zero only when all the intensity levels in the
image are the same, which implies the existence of only one class of pixels. This
in turn means that 7 = 0 for a constant image since the separability of a single
class from itself is zero.

(10.3-15)
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Although our interest is
in the value of 5 at the
optimum threshold, k*,
this inequality holds in
general for any value of

k in the range [0, L — 1].

Reintroducing k, we have the final results:

n(k) = o%o(%k) (103-16)

and
[mgPy(k) — m(k)]"
P(k)[1 = Py(k)]

a(k) = (103-17)

Then, the optimum threshold is the value, k*, that maximizes 0% (k):

oh(k*) = max op(k) (10.3-18)

In other words, to find k* we simply evaluate Eq. (10.3-18) for all integer values
of k (such that the condition 0 < P;(k) < 1 holds) and select that value of k
that yielded the maximum o% (k). If the maximum exists for more than one
value of k, it is customary to average the various values of k for which o%(k) is
maximum. It can be shown (Problem 10.33) that a maximum always exists,
subject to the condition that 0 < Pj(k) < 1. Evaluating Egs. (10.3-17) and
(10.3-18) for all values of k is a relatively inexpensive computational proce-
dure, because the maximum number of integer values that k can have is L.
Once k* has been obtained, the input image f(x, y) is segmented as before:

1 if f(x,y) > k*
8(x,y) {0 if £ (x y) < k* (10.3-19)
forx=0,1,2,....M —landy = 0,1,2,..., N — 1. Note that all the quan-
tities needed to evaluate Eq. (10.3-17) are obtained using only the histogram
of f(x, y). In addition to the optimum threshold, other information regarding
the segmented image can be extracted from the histogram. For example,
Pi(k*) and Py(k*), the class probabilities evaluated at the optimum threshold,
indicate the portions of the areas occupied by the classes (groups of pixels) in
the thresholded image. Similarly, the means m;(k*) and m,(k*) are estimates
of the average intensity of the classes in the original image. ‘

The normalized metric 7, evaluated at the optimum threshold value, n(k*),
can be used to obtain a quantitative estimate of the separability of classes,
which in turn gives an idea of the ease of thresholding a given image. This mea-
sure has values in the range

{
0=nk*) =1 (10.3-20)
The lower bound is attainable only by images with a single, constant intensity

level, as mentioned earlier. The upper bound is attainable only by 2-valued
images with intensities equal to 0 and L — 1 (Problem 10.34).



